ERP News

Nine do’s and don’ts of big data

883 0
Do’s and don’ts of big data

Do’s and don’ts of big data

Do’s and don’ts of big data- As AI becomes mainstream, big data is being applied to every aspect of business – but how do organisations extract value from it? How do you use it for key executive management decisions in the real world – and what are the pitfalls to avoid?

Don’t leave it to the data analysts

The days when ‘technology’could be left to the chief information officer are long gone. You can’t simply give the analytics team the information and ask them to tell you what the business should do next. Maybe, in the next iteration of AI, the analytics will be able to tell you what to sell, who to hire, how to build the website, how to market to your customers and even how to micro-manage the business – but they still won’t be able to tell you what business to be in and why. And, regardless how much data the CIO may have at her or his disposal, they may be no better than the guy at the bus stop when it comes to spotting external threats to the business and new opportunities, let alone how to respond to them. That means the CEO and senior management have to stay on top of what the data is telling them, lead the analytics team in addressing real business concerns, and work constantly to make sure all the data is being targeted at intelligent investment.

Don’t get lost in translation

Many companies now have teams of software engineers pulling the data in from ever-expanding sources, including social media, smartphones, sensors, payment systems and cameras. The question is what to do with it. How do you interpret it so you can put it to positive use, rather than just dig the database ever deeper? You need business analysts who can read the information and see how to use it to spot market opportunities, identify problems, come up with solutions and lead change. In other words, you need business ‘translators’ who may not be fully-fledged data scientists, but who are sufficiently proficient in analytics to take the numbers and know how to apply them for the benefit of the business. And there aren’t many around just yet, so it will likely mean identifying the people in the company who understand the global picture of the business (and who may also have a quantitative background) and getting them up to speed on the analytics side. You also need to invest in training them in terms of leadership skills, so they feel confident in championing change throughout the organisation.

Don’t drown in a sea of data

There is a natural urge to want to capture every atom of the business’s legacy data, then cast around wandering what to do it. Resist the urge – identify how the data was acquired (is it from sales, operations, social media, ‘open’ sources or elsewhere?), have specific business applications in mind, and make sure your data strategy connects directly to the analytics. This means, above all, avoiding the temptation to build complex models from the get-go. Instead of trying to capture all historic information, decide the business priorities – or even one overriding priority – then identify what data is likely to be useful in addressing it, and add to it gradually. This will enable you to develop a sound process and practice – in effect, good data governance – which can then be augmented and refined by linking new and different datasets to yield new insights.

Know where to start

Following on from this, begin by identifying the most promising sources of value to the business. That means developing an organic view of opportunities and pinpointing those components of the value chain with the greatest potential. Is it inventory optimisation or product development? The next step is to identify as many use cases as possible and look at how you can apply new data and techniques to them to generate new insights. Decide your order of priority, based on potential financial impact, suitability to the business, and likely speed of implementation.

Democratise that data

One of the most common reasons for lack of uptake of data analytics is that the people who can put it to best use lack meaningful access to it. Avoiding this pitfall requires a three-step strategy. First, it means making sure that the data is accessible to as many people as possible, so dispense with any organisational hierarchies that may impede access. Second, you need to drive consensus on the validity of the data, so there is agreement that it is, in effect, a single source of ‘truth’ for the business. Third, building on equal access, you need to develop an egalitarian culture whereby everyone is allowed to ‘play’ with the data without fear or favour and try to generate new ideas – or kill established company nostrums that are no longer fit for purpose – in such a way that their ideas, however counterintuitive,  will be given equal airtime when it comes to decision making.

Read More Here

Article Credit: Qrius

Leave A Reply

Your email address will not be published.