ERP News

AI

Does AI require high-end infrastructure?

588 0
AI infrastructure

AI infrastructure

AI infrastructure- There’s no shortage of buzz around artificial intelligence applications in the public sector. They’ve been touted as something of a digital panacea that can address almost all of an agency’s problems, whether it’s a chatbot offloading work from customer services staff or aiding in fraud detection. Still up for debate, however, is what infrastructure agencies must have in place to make the most of AI.

Data science teams are spending less than a quarter of their time on AI model training and refinement because they’re mired in infrastructure and deployment issues, according to a survey by machine-learning deployment firm Algorithmia.

To address those issues, several vendors say that high-performance computing  is the must-have item for agencies looking to launch AI projects. In a whitepaper Intel published in September, the company outlined why the two go so well together. “Given that AI and HPC both require strong compute and performance capabilities, existing HPC users who already have HPC-optimized hardware are well placed to start taking advantage of AI,” according to the paper. The computers also give users the opportunity to improve efficiency and reduce costs by running multiple applications  on one infrastructure.

A 2017 report on AI and HPC convergence put the emphasis on scalability. “Scalability is the key to AI-HPC so scientists can address the big compute, big data challenges facing them and to make sense from the wealth of measured and modeled or simulated data that is now available to them.”.

Lenovo also recognizes the connection, announcing last year a software solution to ease the convergence of HPC and AI. Lenovo Intelligent Computing Orchestration (LiCO) helps AI users by providing templates they can use to submit training jobs — data feeds that will help AI applications learn what patterns to look for — and it lets HPC users continue to use command-line tools.

But agencies that don’t have high-performance machines shouldn’t despair, according to Steve Conway, senior vice president of research, chief operating officer and AI/high performance data analytics lead at Hyperion Research Holdings.

“You can get into this with — a lot of times — the kinds of computers you have in your data centers,” Conway said. “Almost all of the agencies have data centers or access to data centers where there are server systems or clusters, and you can run some of these [AI] applications on those.”

A main benefit of high-end computers is that they can move, process and store much more data in short periods of time, and AI is data-intensive. But chances are that if an agency doesn’t have HPC, it doesn’t have a need for ultra-sophisticated AI.

“At the very forefront of this stuff, you really do need high-performance computers, but the good news there is that they start at under $50,000 now, so they’re not thatexpensive, and there are a lot of folks who don’t need to spend even that kind of money,” Conway said. “They can use the equipment that they have and start exploring and experimenting with machine learning.”

The biggest use cases for AI are fraud and anomaly detection, autonomous driving, precision medicine and affinity marketing, which Conway said is the mathematical twin of fraud and anomaly detection but with different goals. In detection, the objective is to spot the “oddball,” he said, whereas the other looks for as many similar data points as possible.

Read More Here

Article Credit: GCN

Leave A Reply

Your email address will not be published.

*

code