ERP News


AI In Health Care Will Fail Without Proper Context

833 0

“As a jazz musician, you have individual power to create the sound. You also have a responsibility to function in the context of other people who have that power also.” – Wynton Marsalis

We’re at a tipping point in health technology. Vast resources of data have been unlocked through the transition to electronic health records. Value-based care is requiring sophisticated analysis of patient outcomes. Machine learning and artificial intelligence (AI) technology have evolved quickly. All the tools are ready — it’s the hard part that comes next.

In my career in health care and oncology, I’ve been a chemist, a pharmacologist, an entrepreneur, an analyst, an academic, a researcher, a venture capitalist and a technologist. I’ve seen this “hard part” from many angles. Change does not come easily to health care. The systems of making decisions in our sector today are inefficient, full of human flaws and bias. This is certainly true in oncology, my company’s area of focus and also my brilliant wife’s specialty. I’ve come to realize that the problem isn’t technology but context. We need to be sharing a vision. We need to be translating information back and forth seamlessly between physicians, researchers, patients and computers to ask better questions and find better answers. The way to bring health care leaders together around AI is to invite them in through the proper contextual setting of findings.

How do we contextualize this? Earlier this year, I joined the National Academy of Medicine’s new Artificial Intelligence/Machine Learning in Health Care working group to tackle just that. Along with 35 other health care leaders, we’re outlining the promise, development, deployment and use of AI for policymakers, providers, payers, pharma, tech companies and patients. Every part of our healthcare system needs better translation:

• Physicians: Doctors are communicators, contextualizing their medical knowledge into care decisions and patient expectation. AI needs to understand and evolve within this framework, using physician expertise to ask informed questions from vast datasets. It shouldn’t stop there: AI should be presenting complex statistical recommendations to physicians in an easy-to-use format and closing the feedback loop with analysis of what worked. As health care evolves, the value of physician translation expands. Physicians will translate increasingly complex concepts to patients, as well as translating how medical expertise is applied in machine learning and how the practice of medicine transforms based on real-world data.

Read More Here

Article Credit: Forbes

Leave A Reply

Your email address will not be published.