ERP News

A.I. and Big Data Could Power a New War on Poverty

739 0
A.I. and Big Data Could Power a New War on Poverty

A.I. and Big Data Could Power a New War on Poverty

When it comes to artificial intelligence and jobs, the prognostications are grim. The conventional wisdom is that A.I. might soon put millions of people out of work — that it stands poised to do to clerical and white collar workers over the next two decades what mechanization did to factory workers over the past two. And that is to say nothing of the truckers and taxi drivers who will find themselves unemployed or underemployed as self-driving cars take over our roads.

But it’s time we start thinking about A.I.’s potential benefits for society as well as its drawbacks. The big-data and A.I. revolutions could also help fight poverty and promote economic stability.

Poverty, of course, is a multifaceted phenomenon. But the condition of poverty often entails one or more of these realities: a lack of income (joblessness); a lack of preparedness (education); and a dependency on government services (welfare). A.I. can address all three.

First, even as A.I. threatens to put people out of work, it can simultaneously be used to match them to good middle-class jobs that are going unfilled. Today there are millions of such jobs in the United States. This is precisely the kind of matching problem at which A.I. excels. Likewise, A.I. can predict where the job openings of tomorrow will lie, and which skills and training will be needed for them.

Historically we have tended to shy away from this kind of social planning and job matching, perhaps because it smacks to us of a command economy. No one, however, is suggesting that the government should force workers to train for and accept particular jobs — or indeed that identifying these jobs and skills gaps needs to be the work of the government. The point is that we now have the tools to take the guesswork out of which jobs are available and which skills workers need to fill them

 Second, we can bring what is known as differentiated education — based on the idea that students master skills in different ways and at different speeds — to every student in the country. A 2013 study by the National Institutes of Health found that nearly 40 percent of medical students held a strong preference for one mode of learning: Some were listeners; others were visual learners; still others learned best by doing.

Leave A Reply

Your email address will not be published.

*

code