ERP News

Infrastructure, scaling and staffing top barriers to analytics success

SHARE
, / 195 0

The number of organizations implementing big data and analytics projects has increased dramatically, but many struggle with a number of challenges to achieving the returns on investment they hope for.

That is the conclusion of a new study on machine data analytics by 451 Research and sponsored by Logtrust. The report, entitled “The Need for Speed: Machine Data Analytics in 2016-17” found that most organizations currently employ data analytics, and are most frequently using it for IT operations management (cited by 80 percent) and security (cited by 60 percent). Other common use cases include the Internet of Things (cited by 51 percent), big data analytics (cited by 51 percent), fraud analytics (cited by 45 percent) and IT governance/compliance (cited by 34 percent).

When asked what challenges they have faced with achieving hoped-for results with analytics projects, respondents cited infrastructure requirements ( cited by 36 percent), scaling challenges (cited by 33 percent), staffing requirements (cited by 33 percent), slow analytics (cited by 32 percent), expense (cited by 31 percent) and technical challenges (cited by 30 percent).

One of the most important features that respondents said they look for in analytics capabilities is speed, the report notes.

Just how fast is considered ‘fast’? Sixty-nine percent of respondents want machine real-time (within milliseconds) while 51 percent want human real-time (five seconds to five minutes latency), a desire validated in the report by author Jason Stamper, data analyst at 451 Research.

“Real-time is absolutely critical for companies to compete effectively,” Stamper says. This, however, illustrates a current market gap, as 53 percent said their technology wasn’t even capable of human real-time analytics.

Respondents were split between open source (cited by 39 percent), proprietary (cited by 36 percent) and a mixture of the two. The majority (67 percent), however, said they would choose proprietary technology when they use machine data analytics in the future.

For Full Story, Please click here.

Leave A Reply

Your email address will not be published.

*

code

PASSWORD RESET

REGISTER


*

code

LOG IN